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Moving phreatic surface in a porous slab: an analytical solution
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Abstract. Transient Darcian flow in an inclined rigid fully saturated porous layer is studied. A phreatic surface
of fixed shape driven by uniformly increasing (but generally not equal) water levels in the contiguous reservoirs
moves upward with a constant velocity. In a system of coordinates travelling with the reservoir water level the real
and imaginary parts of the complex potential (an analytic function) and complex coordinate are linearly intercon-
nected along the boundary of the flow domain that allows implementing the Polubarinova-Kochina method. An
explicit analytic equation of the free surface is derived and shown to result in non-trivial configurations including
the saturated zone overhanging dry areas.
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1. Introduction

A phreatic surface or water table is the interface between the saturated and unsaturated zone
in aquifers and hydrotechnic constructions (dams, embankments, liners, to name few). Math-
ematically this surface is a free boundary, along which two conditions hold, a dynamic condi-
tion (isobaricity) and a kinematic condition requiring that all front particles stay with the front
wherever it moves. Determination of this free surface is a daunting nonlinear problem, which
is often circumvented through hydraulic approximations (the Dupuit-Forchheimer model),
linearizations (the linear potential model), or a simple ignorance of the flow transience in
steady-state models (e.g. [1–8]). However, in some cases high-amplitude fluctuations of water
levels occur and seepage is not dominantly horizontal (for example, flow through an embank-
ment exposed to flood-type variations of the head and tail water levels) and, hence, one has to
use the nonlinear potential model [1, pp. 547–550].

Due to analogies with other free-boundary problems [9–10], the phreatic-surface problem
has attracted considerable attention of applied mathematicians [11–13]. There are still very
few simple analytic solutions in terms of the full nonlinear model, which could verify practical
calculations based on numerical codes.

In this paper we develop a new, simple but rigorous solution for an advancing phreatic-
surface problem. We consider a 2-D flow in a porous slab where a free surface is ‘pulled’ up by
increasing water levels in adjacent reservoirs. In a moving coordinate system the configuration
of the free surface is stationary, i.e., we have a travelling-wave solution. The head distribution
is governed by the Laplace equation and transient features appear due to variations of the head
along the reservoir boundaries.
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Figure 1. Flow in a tilted layer.

2. Mathematical model

We consider a tilted homogeneous porous layer of constant thickness d, conductivity k, and
porosity m (Figure 1a). The angle of inclination is πµ, 0 < µ < 1

2 . The layer separates two
reservoirs, in which the water level rises with a rate Rd . The hydraulic head loss across the
layer, H , remains constant. A free surface BC advances within the layer. Figure 1a and all
further figures show the case when the hydraulic head along A1B is higher than along A2C,
though reverse-flow regimes are possible.

We consider both the soil and water as incompressible, seepage as Darcian, the layer as
homogeneous and isotropic. We neglect the capillary fringe and the unsaturated zone and
assume that BC separates completely wet and dry zones.

The hydraulic head hi along the left (A1B) and right (A2C) boundaries is hi = H1(t) and
hi = H2(t) (t is time), i.e., AC and AB are equipotential boundaries. The head is counted
from an arbitrary datum level OX.

For simplicity, we restrict ourselves to the flow regimes, for which the reservoir levels
and the free surface coincide at points B and C. For arbitrary H1(t) and H2(t) it is not the
case and seepage faces (BB1 and CC1 in Figure 1b) may appear (so-called decoupling [7]).
Therefore, to avoid the seepage faces we assume that H is not too high (in particular, H = 0
is allowable). We shall derive explicitly the restriction on H , which guaranties no decoupling.

Thus, the water levels H1 and H2 increase uniformly and synchronically as

H1 = Rdt +H, H2 = Rdt, (1)
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Figure 2. Physical systems with advancing phreatic surfaces: a dam (a), a composition of fractures and blocks (b).

where Rd is a constant rate, which can be found from the ascending limb of the corresponding
hydrograph, H is the constant head difference between A1B and A2C.

In cheap embankments designed to sustain low H values the bulk dam volume is made up
of a coarse material (say, gravel) of high conductivity K and only thin clay liner or core of
low conductivity k is constructed (Figure 2a). Then, the phreatic surface in the coarse filling
is a straight (dashed in Figure 2a) line CC1 [14, p. 233]. Any variations of the tail water level
induce a fast response of CC1, which remains nearly straight. Hence, at K � k the coarse part
can be disregarded and flow in the liner as in Figure 1a should be studied. Another justification
of the scheme in Figure 1a can be found in geomechanics. In fractured media (Figure 2b) water
can quickly rise in the constituting system of fractures, while porous blocks of a relatively
lower permeability are wetted slowly. Usually, capillarity plays a crucial role in the process
of imbibition into blocks. However, we shall show that, even in purely gravity-driven flows
there always exists nonuniformity of wetting caused by a non-flat phreatic surface, which lags
behind the fracture water level as in Figure 2b.

The layer in Figure 1a is not restricted from below, i.e., we neglect the impermeable bottom
as in Figure 2a (or any other boundaries) far behind the free surface. We consider the process
of water rise after sufficient time such that BC is stabilized and moves along the layer without
shape changes (so-called traveling wave regime). The velocity of this movement is:

Vm = Rd/ sin µ. (2)

A snapshot flow picture is shown in Figure 3a. Far enough from the free surface (near A1

and A2) the flow is nearly steady and nearly one-dimensional. The velocity here equals kH/d

and is perpendicular to A1B and A2C. Near the advancing front seepage is 2-D. In particular,
there exists a hinge point M on A2C. It means that water flows into the down pool from the
slab through A2M and from the reservoir into the layer – through MC. Clearly, a particle
which has moved into the layer from MC is finally forced to come back into the down pool,
i.e., its trajectory makes a loop.

For mathematical convenience (similarly to the Saffman-Taylor viscous fingering problem
[9]), we adopt the moving coordinates (xBy), which origin B travels along the right-hand
boundary of the flow domain, i.e.

x = X − Rd cotµt, y = Y − Rdt, (3)

where X,Y are space-fixed coordinates. Owing to this change the value of hydraulic head
becomes:
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Figure 3. Instantaneous streamline picture with the ultimate straight free surfaces (a), flow picture near the free
surface -reservoir contact (b), travelling-wave solution to the Bousinesq model (c).

h = hi − Rdt. (4)

The head hi(x, y, t) is a harmonic function within the layer (recall the incompressibility
assumption) and so is the transformed head

�h(x, y) = 0 (5)

with boundary conditions derived from (1) and (4):

h = H along AB, h = 0 along AC. (6)

Along the free surface BC a standard isobaric condition holds hi = Y or

h = y. (7)

From elementary trigonometry, at any point P on the free surface (Figure 1a) Vm =
Vn(s)/ sin[α(s) + µ], where Vn is the position-dependent propagation velocity of the free
surface in the direction along the outer normal to BC, s is the arc coordinate along BC, and
α(s) is the angle between BC and the horizontal level (Bx). From the Darcy law we have:

Vn = − k

m

∂h

∂n
.

Combining this expression with the kinematic condition (2) we arrive at
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Figure 4. Hodograph (a), the complex-potential domain (b), and an auxiliary plane (c).

∂h

∂n
= R

sin(α + µ)

sinµ
, (8)

where R = mRd/k is a non-dimensional rate of rise.
Thus, (3) transforms XOY to xBy and the moving boundary-value problem is reduced

to the determination of a harmonic function (5) with boundary conditions (6–8) in a time-
independent domain with a priori unknown BC.

3. Solution

3.1. STATEMENT OF THE BOUNDARY-VALUE PROBLEM

We introduce the complex coordinate z = x + iy, the complex potential w = $(x, y) +
i%(x, y) where $ = −kh is the velocity potential and % is the stream function, and the
complex hodograph ω = u + iv. We designate the flow domain as Gz and the corresponding
domains in ω-plane and w-plane as Gω and Gw, respectively. The functions w(z) and u−iv =
dw/dz are analytic within Gz. The domain Gω is shown in Figure 4a. Clearly, points A1 and
A2 in Gω coincide and are represented by one point A. The domain Gw is diagrammed in
Figure 4b (we assume %B = 0). There is a cut in Gw because BC is not monotonic with
respect to $. It reflects the fact that water flows from MC into the slab.

Along each part of the boundary of Gz a pair of linear conditions is satisfied:

$ = kH, x sinπµ− y cos πµ = 0 along AC,

$ = 0, x sinπµ− y cos πµ+ d = 0 along AB,

$+ ky = 0, % + kR(x − y cotπµ) = 0 along BC.

(9)

The second condition along BC in (9) follows directly from (8) upon substitution of the
obvious equalities

∂h

∂n
= 1

k

∂%

∂s
, cos α = −dx

ds
, sinα = dy

ds
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in (9) and integration with respect to s. Note, that the pair of conditions along BC is equivalent
to the Polubarinova–Kochina [1, p. 340] conditions along a steady phreatic surface with a dis-
tributed infiltration-evaporation, the intensity of which depends on two Cartesian coordinates
(in standard models of accretion along the water table % is assumed to be a function of x [1,
p. 51, 15]). Hence, the circle, whose segment corresponds to BC in Gω, is not centered at the
ordinate axis as in the case of phreatic surfaces with x-dependent accretion or in equivalent
problems with a salt-fresh water sharp interface where $ − cy = 0,% = 0 [1, pp. 330–340].

We introduce an auxiliary variable ζ = ξ + iθ depicted in Figure 4c and map Gw and Gz

onto the upper half-plane of ζ , Gζ . According to the Riemann theorem the correspondence
between three boundary points in Gz and Gζ can be selected arbitrarily and we choose them
as is shown in Figure 4c.

To reconstruct the analytic function z(ζ ), we employ the Polubarinova–Kochina method
[1, pp. 240–264], which has been recently applied to several free-boundary problems [15–
18]. We use two functions Z(ζ ) = dz/dζ and W(ζ) = dw/dζ which make conditions (9)
homogeneoues [1].

The points A,B,C where the boundary conditions (9) change are called singular points.
We have to examine the behavior of Z and W (which we both designate as f ) at these points.

First, we determine the angles πνB and πνC between BC and the reservoir boundaries
(Figure 1a). Unlike the Polubarinova-Kochina analysis in steady regimes, we have to take
into account the transience. We consider a small time step dt during which the water level
in the pools increases from E1F1 to E2F2 (Figure 3b, F2 corresponds to either B or C in
Figure 1a). The free surface advances near the ‘tip’ F2 in such a way that the segment F2F3

can be approximated as a straight line. Seepage near this tip is nearly one-dimensional and
perpendicular to the pool boundary F1F2. During this time lapse a marked water particle
moves from point F1 (t = 0) at the reservoir bed to point F3 (t = dt) within the slab. The
distance passed is |F1F3| = VF1 dt . Obviously, |F1F2| = Rddt/ sin πµ. Hence,

tanπν = |F1F3|
|F1F2| = VF1

Rd

sinπµ. (10)

Directly from the Darcy law (one-dimensional flow)

VF1 = k

m

dh

|F1F3| , (11)

where dh is the head difference between points F1 and F3. Counting the head from E2F2 we
can write dh = |F2G| = |F2F3| cosπ( 1

2 − µ − ν). Because |F1F3| = |F2F3| sinπν, we
combine (10) and (11) in

R tanπν = sinπµ
sinπ(µ+ ν)

sinπν
,

which is reduced to a quadratic equation with respect to cot πν:

cot2 πν + cot πµ cot πν − R

sin2 πµ
= 0.

Its solution yields two roots, i.e., the angles (Figure 1a) are

νB = 1

π
arccot

√
cos2 πµ + 4R − cosπµ

2 sinπµ
,

νC = 1

π
arccot

√
cos2 πµ + 4R + cosπµ

2 sinπµ

(12)
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where 0 < νC < µ and 0 < νB < 0·5.

3.2. RECONSTRUCTION OF CHARACTERISTIC FUNCTION

Using the Polubarinova-Kochina technique we could have introduced the determinants, calcu-
lated the exponents near the singular points, written out the Riemann P-function, and arrived
at a pair of linearly independent solutions of the corresponding Fuchsian equation in terms
of the hypergeometric function (with different representation near the three points). However,
we shall use an alternative form of the Polubarinova–Kochina method without resorting to the
theory of ordinary differential equations.

The functions f (ζ ) to be found constitute a set with the following properties:

3.2.1. Property 1
f (ζ ) are analytic including the boundary of Gζ , except for the three singular points ζi, i = 3.
Hence, through any part of the real axis Cξ between two neighboring singular points the
functions can be continued from Gζ to the lower half-plane 	(ζ ) < 0. In the vicinity of the
singular points f may be written as [16]:

f (ζ ) = (ζ − ζi)
βi$1i(ζ )+ (ζ − ζi)

βi+γi$2i(ζ ), (13)

where $1i (ζ ) and $2i(ζ ) are analytic in the vicinity of ζi , i.e., in the disks |ζ | < 1, |ζ−1| < 1
and ζ > 1, ζ < 0; the constants βi and γi (γi > 0) are the same for all functions from the set.
The singular points ζi and parameters βi, γi defining this class are determined from (9).

3.2.2. Property 2
If one chooses two different (linearly independent) functions from the set, then any function
from the set can be represented as a linear combination of these two functions. In other words,
the class is two-parametric and any function from the set is defined by ζi, βi, γi up to two
complex constants.

3.2.3. Property 3
If the domains Gz and Gw are infinite strips with parallel boundaries in the vicinity of a
singular point ζj = ∞, then f can be represented near ζj as

f (ζ ) = $(ζ)

ζ − ζj
.

The analytic function $(ζ) is not zero at this point. Then this singular point is called a
removable singularity.

In our problem, z(ζ ),w(ζ ) ∼ log ζ near A and hence A is a removable singularity. Two es-
sentially singular points are C and B. This reduces the solution for Z to elementary functions
instead of hypergeometric functions in the general case of three non-removable singularities.

According to Property 1 and (13), the functions f (ζ ) can be represented near ζ = 0 as

f (ζ ) = ζ βC [$C1(ζ )+ ζ γC$C2(ζ )].
The functions $C1(ζ ) and $C2(ζ ) are analytic in the whole plane, except for ζ = 1, i.e.,

can be written as:

$C1(ζ ) = (ζ − 1)βB
[
$11(ζ )+ (ζ − 1)γB$12(ζ )

]
,
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$C2(ζ ) = (ζ − 1)βB
[
$21(ζ )+ (ζ − 1)γB$22(ζ )

]
,

where $11,$12,$21,$22 are analytic in the whole plane.
It implies that

f (ζ ) = ζ βC (ζ − 1)βB [$11(ζ )+ ζ γC$21(ζ )+ (ζ − 1)γB$12(ζ )+ ζ γC (ζ − 1)γB$22(ζ )].
For definiteness we set (it is true for our problem) −1 < βC < − 1

2 , −1 < βB < − 1
2 .

According to Property 3, the right-hand part in the last equation sum must be representable
as:

$11(ζ )+ ζ γC$21(ζ )+ (ζ − 1)γB$12(ζ )+ ζ γC (ζ − 1)γB$22(ζ ) = $∞(ζ )ζ η,

where η = −1 − βC − βB, 0 < η < 1 and $∞(ζ ) is an analytic function near infinity.
Obviously, the analytic function $11(ζ ) must tend to zero at infinity and due to the Liouville
theorem $11(ζ ) ≡ 0. The points ζ = 0 and ζ = 1 are essentially singular and hence γC and
γB are not integer. Therefore, the above expression is possible if γC = γB = η and $22 ≡ 0.
Again, according to the Liouville theorem both $21 and $12 must be constants.

Thus, the function sought is:

f (ζ ) = ζ βC (ζ − 1)βB (D1ζ
η +D2(ζ − 1)η), (14)

where D1 and D2 are complex constants according to Property 2.

3.3. DETERMINATION OF THE FREE SURFACE

Since the angles of Gz at points B and C are νB and νC , we can write:

βB = νC − 1, βC = νB − 1.

We determine two complex constants D1,D2 in (14) from the geometry of our flow do-
main. Since AB and AC are straight lines with an angle of inclination πµ, we have

D1 = −C1eiπµ, D2 = −C2eiπµ,

where C1 and C2 are two real constants. From the jump condition of the functions Z(ζ ) and
z(ζ ) in the vicinity of A we can establish that C1 + C2 = d/π . Finally, we get:

Z(ζ ) = 1

ζ 1−νC (1 − ζ )1−νB
[
C1eiπ(µ+νB)ζ η − C2eiπ(µ−νC)(1 − ζ )η

]
,

where η = 1 − νB − νC .
To find the constants C1, C2 in (15), we integrate it as

z(ζ ) = C1$1(ζ )+ C2$2(ζ ),

where $1(ζ ),$2(ζ ) are ‘linear’ solutions (corresponding to straight free surfaces BCd and
BCu shown in Figure 3a, bold lines).

We can consider C1, C2 as problem parameters. Then H, d are expressed linearly through
C1, C2. Hence, C1, C2 are linearly dependent on H, d and we can write them in the following
form

C1 = 1

π

(
A1d + B1

H

sinµ

)
, C2 = 1

π

(
A2d + B2

H

sinµ

)
, (16)
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where Ai, Bi (i = 2) are the coefficients to be found. Let the pair d(1), H(1) corresponds to
the first linear solution with angle νB (line BCd in Figure 3a). For this solution C2 = 0.
From the slab thickness at infinity C1 = d(1)/π , which is the jump condition for z(ζ ) (recall
that z has a logarithmic behaviour at infinity). Since BCd is a straight line, we have H(1) =
d(1)(cotπνB + cotπµ) sinµ. Similarly, for the second linear solution (Figure 3a, line BCu)
C1 = 0, C2 = d(2)/π , H(2) = d(2)(− cotπνC + cot πµ) sinµ. Consequently, from these
conditions A2, B2 satisfy the system

A2 + B2(cot πνB + cotπµ) = 0 (from C2 = 0),

A2 + B2(− cot πνC + cotπµ) = 1

(
from C2 = d(2)

π

)
.

(17)

From (17) we express A2, B2 (and analogously A1, B1), substitute them in (16) and obtain:

C1 = d
cotπνB +Hd/(sinπµ)

π(cotπνB + cotπνC)
, C2 = d

cot πνC −Hd/(sinπµ)

π(cotπνB + cotπνC)
, (18)

where Hd = H/d. So, we found the constants in (15) just as in [16, p. 161].
Now we separate the real and imaginary parts in (15) as

dx

dξ
= C1 cosπ(µ+ νB)ξ

−νB (1 − ξ)νb−1 − C2 cosπ(µ− νC)ξ
νC−1(1 − ξ)−νC , (19)

dy

dξ
= C1 sinπ(µ+ νB)ξ

−νB (1 − ξ)νb−1 − C2 sinπ(µ− νC)ξ
νC−1(1 − ξ)−νC .

We integrate (19), using:
∫ ξ

0
τ−νB (1 − τ)νB−1 dτ = ξ 1−νB

1 − νB
2F1[1 − νB, 1 − νB; 2 − νB; ξ ],

∫ ξ

0
τ νC−1(1 − τ)−νC dτ = ξνC

νC
2F1[νC, νC; 1 + νC; ξ ],

where 2F1 is the hypergeometric function [19, pp. 555–566].
Since x(1) = y(1) = 0 (point B is the origin of coordinates) we determine two constants

of integration and arrive at the following parametric equation of BC:

x(ξ) = −C1 cos π(µ+ νB)

[
π

sin πνB
− ξ 1−νB

2F1[1 − νB, 1 − νB; 2 − νB; ξ ]
1 − νB

]
+

C2 cosπ(µ− νC)

[
π

sinπνC
− ξνC 2F1[νC, νC; 1 + νC; ξ ]

νC

]
,

(20)

y(ξ) = −C1 sin π(µ+ νB)

[
π

sin πνB
− ξ 1−νB

2F1[1 − νB, 1 − νB; 2 − νB; ξ ]
1 − νB

]
+

C2 sinπ(µ− νC)

[
π

sin πνC
− ξνC 2F1[νC, νC; 1 + νC; ξ ]

νC

]
,
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where 0 ≤ ξ ≤ 1.
If the physical and geometrical parameters in (18) give C1 = 0 or C2 = 0, then the

corresponding free surfaces are straight lines BCd and BCu (bold lines in Figure 3a). In these
cases point M coincides with C or B, respectively, and the cut in Gw (Figure 4b) disappears.
Factually, the general solution (20) is a linear combination of two ‘straight-line solutions’ and
the curve BC is always located in the corresponding ‘triangle’ BCdCu (Figure 3a).

Of course, the head difference H can physically be higher than for two limiting straight-
line regimes in Figure 3a. In this case, a seepage face appears and our solution is not valid.
Hence, we can derive the restriction, which guaranties the regime without seepage faces:

− cotπνB < Hd sinπµ < cot πνC.

Since the hypergeometric function 2F1 is a built-in procedure of modern computer al-
gebra packages (e.g. [20, p. 750]) calculations in (20) were easily done. Figure 5a shows
the free surface at Hd = 0, µ = 1

2 . Figure 5b illustrates the case µ = 1/4,Hd = 0 ·5,
curves 1–3 correspond to R = 0·1, 0·2, 0·3. Figure 5c shows advancing phreatic surfaces at
µ = 1/6,Hd = 1·0 for three rates R = 0·25, 0·5, 0·75 (curves 1–3, respectively). From these
graphs we can see that near the slopes the free surface (F2F3 in Figure 3b) is indeed close
to a straight line as we assumed in our asymptotic analysis. However, between the pools its
shape is non-trivial. For example, in Figure 5c at R = 0·5 and R = 0·75, the saturated zone
near the point B ‘overhangs’ the dry zone, i.e., a vertical line drawn from the upper pool and
starting near B intersects the free surface twice! However, the ‘overhanging’ configuration is
stable because pressure in the saturated zone is higher than atmospheric in the dry zone and
therefore small disturbances on BC do not propagate. The ‘cusp’ near C in Figure 5c seems to
be difficult to model by standard numerical codes and even in steady-state regimes the vicinity
of corner points is scrutinized [21].

Let us compare our 2-D solution with the Boussinesq model [1, pp. 431–451], which
assumes that the lines perpendicular to an impermeable bottom are equipotentials (so-called
hydraulic approximation). As we have mentioned, in our potential model (5–8) the flow is
nearly uniform sufficiently far from BC, i.e., a remote streamline F4F5 in Figure 3a can be
viewed as an inclined impermeable bottom. Let us introduce a longitudinal coordinate xb
oriented along this streamline (Figure 3c). According to the hydraulic model flow is one-
dimensional from BF4 to CdF5 and the phreatic surface hf (xb, t) counted from F4F5 is no
longer more a free surface in a mathematical sense. Instead, we have the following nonlinear
diffusion-convection equation [22]:

∂hf

∂t
= α

[
sinπµ

∂

∂xb
(hf

∂hf

∂xb
) + cosπµ

∂hf

∂xb

]
(21)

where α = k/m.
Let us search for a solution of (21) in the form hf (xb, t) = a(t)xb + b(t). Substituting

this expression in (21), we arrive at two ordinary differential equations. From the first one
a′(t) = 0 and hence a = const. = tanπγ . From the second ODE b = α(sinπµ tan2 πγ +
cosπµ tanπγ )t . Consequently, we obtain a traveling-wave solution to (21). Clearly, this
straight-line phreatic surface may exist if water rises in both reservoirs at a constant rate
Rd . Since hf = Rd/ sin πµ and νC = γ + 1

2 , we obtain that the ‘hydraulic’ rate Rd =
α sin πµ(sinπµ cot2 πνc + cosπµ cot πνC), i.e., it is the same as in the local analysis (see
Figure 3b) for the full 2-D potential model. Thus, we have discovered another example (see
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Figure 5. Free boundaries for various flow and geometric parameters.

Figure 6. Nondimensional ordinate of the groove in Figure 2b (H = 0, µ = 1
2 ) as a function of R.

also [23], [24]) when straight-line solutions in hydrodynamic and hydraulic models match.
Obviously, (21) as a one-dimensional model is unable to describe intricate flow patterns with
a nonmonotonic phreatic surface or a hinge point as in Figure 3a.

In the simplest case µ = 1
2 , H = 0 (Figure 2b) the curve BC is symmetric, νB = νC =

ν = π−1arccot
√
R. The nondimensional ordinate of the deepest point h = y(0·5)/d (see

Figure 2a) of the ‘groove’ as a function of R is shown in Figure 6 and illustrates the kinematic
lag between the reservoirs’ levels and the phreatic surface dragged behind. In this specific
case, a water particle does not seep across the slab. Instead, pushed initially into the porous
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medium by the rising reservoir levels, it decelerates with time and finally rests (at µ = 1
2

the velocity at point A is zero). Obviously, the Boussinesq model (21) at µ = 1
2 results in a

trivial travelling-wave solution (with γ = 0). Hence, the Boussinesq model is not applicable
in this case. Indeed, real seepage, as our potential model shows, is ‘quasi-vertical’, while the
Dupuit–Forchheimer approximation postulates predominantly horizontal (parallel to the bed)
flow, which does not exist, because there is no F4F3 streamline (Figure 3a) as in the general
case µ �= 1

2 .

4. Discussion and conclusion

The Polubarinova–Kochina method to solve 2-D potential-flow problems with free surfaces is
one of the most complicated to use in groundwater hydrology and geotechnical engineering.
In the days when it was developed, the special functions in general and the Riemann symbolic
representations of the derivatives of the complex potential and complex coordinate, which
generally lead to hypergeometric functions, were difficult for a practical treatment. Even
applied mathematicians, who encountered integration of these functions, had to rely on an
asymptotic analysis and often only limiting cases of free-boundary problems were studied in
full detail.

Modern symbolic software allows any engineer to check the old solutions from [1] or
derive new ones (like those for our flow pattern with an advancing phreatic surface or mathe-
matically similar steady-state seepage problems [15, 17, 25]). The solution presented is based
on severe limitations. For example, we ignored the unsaturated zone, assumed a simple geome-
try of the flow domain (a strip-type layer) and a special flow regime (a constant rate of increase
of water levels with not too high head drop across the slab). However, we used a rigorous 2-D
potential model including on a priori unknown phreatic surface with two nonlinear (in terms
of the velocity potential) boundary conditions [1, p. 548]. Therefore, the explicit and simple
formulae derived may serve as tests for numerical codes applied to real problems with moving
phreatic surfaces.

5. Acknowledgments

This study was supported by Sultan Qaboos University, projects AGSWAT 9903, AGR/99/13
and by the Russian Foundation of Basic Research, grants N99-01-00364, 99-01-00173. Help-
ful comments and criticism of four anonymous referees are appreciated.

References

1. P.Ya. Polubarinova-Kochina, Theory of Ground Water Movement. Moscow: Nauka (1977) (in Russian)
664 pp.

2. G. Kovacs, Seepage Hydraulics. Amsterdam: Elsevier(1981) 730 pp.
3. S.J. Lacy and J.H. Prevost, Flow through porous media: a procedure for locating the free surface. Int. J. Num.

Anal. Methods Geomech. 11 (1987) 585–601.
4. B. Muhutham and C.L. Harwood, Seepage towards vertical cuts, J. Geotech. Eng. ASCE 115 (1989) 1339–

1340.
5. M.E. Savci, Unsteady drawdown of water table. J. Irrigation and Drainage ASCE 116 (1990) 508–526.
6. A.R. Kacimov, Estimation and optimization of transient seepage with free surface. J. Irrigation and Drainage

ASCE 119 (1993) 1014–1025.



Moving phreatic surface in a porous slab 411

7. I.L. Turner, B.P. Coates and R.I. Acworth, The effects of tides and waves on water-table elevations in coastal
zones. Hydrogeology J. 4 (1996) 51–69.

8. G. Rehbinder, Relaxation of pore pressure in a slender core of a rockfill dam. J. Hydraul. Res. 35 (1997)
161–176.

9. P. Pelce, Dynamics of Curved Fronts. Boston: Academic Press (1988) 514 pp.
10. J. Crank, Free and Moving Boundary Problems. Oxford: Oxford University Press (1984) 425 pp.
11. J.F. Rodrigues, On the free boundary of the evolution dam problem. In: Free Boundary Problems: Theory

and Applications, V.2. Boston: Pitman (1983) 125–134.
12. H.W. Alt, Nonsteady fluid flow through porous media. In: Free Boundary Problems: Applications and

Theory, V.3. Boston: Pitman (1985) 222–228.
13. U. Hornung, Free and moving boundary problems arising in porous media flow and transport (rapporteur’s

report). In: Free Boundary Problems: Theory and Applications, V.1. New York: Longman (1990) 349–361.
14. H.R. Cedergren, Seepage, Drainage and Flow Nets. New York: Wiley (1989) 465 pp.
15. R.V. Craster, Two related free boundary problems. IMA J. Appl. Math. 52 (1994) 253–270.
16. S.D. Howison and J.R. King, Explicit solutions to six free-boundary problems in fluid flow and diffusion.

IMA J. Appl. Math. 42 (1989) 155–175.
17. M. Bakker, Groundwater flow with free boundaries using the hodograph method. Adv. Water Res. 20 (1997)

207–216.
18. R.V. Craster and V.H. Hoang, Applications of Fuchsian differential equations to free boundary problems.

Proc. R. Soc. London A 454 (1998) 1241–1252.
19. M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions. New York: Dover (1965) 1046 pp.
20. S. Wolfram, The Mathematica. Cambridge: Wolfram Media and Cambridge Univ. Press (1996) 1403 pp.
21. J. Aitchison, Numerical treatment of a singularity in a free boundary problem. Proc. R. Soc. London A 330

(1972) 573–580.
22. N.E.C. Verhoest and P.A. Troch, Some analytical solutions of the linearized Boussinesq equation with

recharge for a sloping aquifer. Water Resour. Res. 39 (2000) 793–800.
23. A.R. Kacimov, Comment on the paper ‘Linearised Boussinesq equation for modeling bank storage – a

correction’ by W.L. Hogarth, R.S. Govindaraju, J.Y. Parlange, J.K. Koelliker. J. Hydrology 218 (1999) 95–96.
24. A.R. Kacimov and Yu.V. Obnosov, Seepage in a near-reservoir saturated tongue controlled by evaporation

from the phreatic surface. Eur. J. Applied Math. (submitted).
25. N.B. Ilyinsky, A.R. Kacimov and N.D. Yakimov, Designing the shape of soil slopes stable during seepage

in Californian hillsides. R.J. Chandler (ed.), In: Slope Stability Engineering. Proc. of the International Conf.
on Slope Stability. Londen: Thomas Telford (1991) pp. 67–70.


